

10MAT41

Fourth Semester B.E. Degree Examination, June/July 2014 Engineering Mathematics - IV

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Obtain a solution upto the third approximation of y for $\mathrm{x}=0.2$ by Picard's method, given that $\frac{d y}{d x}+y=e^{x} ; y(0)=1$.
(06 Marks)
b. Apply Runge-Kutta method of order 4 , to find an approximate value of y for $x=0.2$ in steps of 0.1 , if $\frac{d y}{d x}=x+y^{2}$ given that $y=1$ when $x=0$.
(07 Marks)
c. Using Adams-Bashforth formulae, determine $y(0.4)$ given the differential equation $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2} \mathrm{xy}$ and the data, $\mathrm{y}(0)=1, \mathrm{y}(0.1)=1.0025, \mathrm{y}(0.2)=1.0101, \mathrm{y}(0.3)=1.0228$. Apply the corrector formula twice.
(07 Marks)
2
a. Apply Picard's method to find the second approximation to the values of ' y ' and ' z ' given that $\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{z}, \frac{\mathrm{dz}}{\mathrm{dx}}=\mathrm{x}^{3}(\mathrm{y}+\mathrm{z})$, given $\mathrm{y}=1, \mathrm{z}=\frac{1}{2}$ when $\mathrm{x}=0$.
(06 Marks)
b. Using Runge-Kutta method, solve $\frac{d^{2} y}{d x^{2}}-x\left(\frac{d y}{d x}\right)^{2}+y^{2}=0$ for $x=0.2$ correct to four decimal places. Initial conditions are $\mathrm{x}=0, \mathrm{y}=1, \mathrm{y}^{\prime}=0$.
(07 Marks)
c. Obtain the solution of the equation $\frac{2 d^{2} y}{{d x^{2}}^{2}}=4 x+\frac{d y}{d x}$ at the point $x=1.4$ by applying Milne's method given that $\mathrm{y}(1)=2, \mathrm{y}(1.1)=2.2156, \mathrm{y}(1.2)=2.4649 . \mathrm{y}(1.3)=2.7514$, $y^{\prime}(1)=2, y^{\prime}(1.1)=2.3178, y^{\prime}(1.2)=2.6725$ and $y^{\prime}(1.3)=3.0657$.
(07 Marks)
3 a. Define an analytic function in a region R and show that $f(z)$ is constant, if $f(z)$ is an analytic function with constant modulus.
(06 Marks)
b. Prove that $u=x^{2}-y^{2}$ and $v=\frac{y}{x^{2}+y^{2}}$ are harmonic functions of (x, y) but are not harmonic conjugate.
(07 Marks)
c. Determine the analytic function $f(z)=u+i v$, if $u-v=\frac{\cos x+\sin x-e^{-y}}{2(\cos x-\cosh y)}$ and $f(\pi / 2)=0$.
(07 Marks)
4 a. Find the images of the circles $|z|=1$ and $|z|=2$ under the conformal transformation $w=z+\frac{1}{z}$ and sketch the region.
(06 Marks)
b. Find the bilinear transformation that transforms the points $0, i, \infty$ onto the points $1,-i,-1$ respectively.
(07 Marks)
c. State and prove Cauchy's integral formula and hence generalized Cauchy's integral formula.

PART - B

5 a. Obtain the solution of the equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\frac{1}{4}\right) y=0$.
(06 Marks)
b. Obtain the series solution of Legendre's differential equation,

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0
$$

(07 Marks)
c. State Rodrigue's formula for Legendre polynomials and obtain the expression for $\mathrm{P}_{4}(\mathrm{x})$ from it. Verify the property of Legendre polynomials in respect of $P_{4}(x)$ and also find $\int_{-1}^{1} x^{3} P_{4}(x) d x$.
(07 Marks)
a. Two fair dice are rolled. If the sum of the numbers obtained is 4 , find the probability that the numbers obtained on both the dice are even.
(06 Marks)
b. Given that $\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})=\frac{7}{12}, \mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})=\frac{1}{6}=\mathrm{P}(\overline{\mathrm{A}} \cap \mathrm{B})$. Prove that A and B are neither independent nor mutually disjoint. Also compute $\mathrm{P}(\mathrm{A} / \mathrm{B})+\mathrm{P}(\mathrm{B} / \mathrm{A})$ and $\mathrm{P}(\overline{\mathrm{A}} / \overline{\mathrm{B}})+\mathrm{P}(\overline{\mathrm{B}} / \overline{\mathrm{A}})$.
(07 Marks)
c. Three machines $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3} produces identical items. Of their respective outputs 5%, 4% and 3% of items are faulty. On a certain day, M_{1} has produced 25% of the total output, M_{2} has produced 30% and M_{3} the remainder. An item selected at random is found to be faulty. What are the chances that it was produced by the machine with the highest output?
(0) 7 Marks)

7 a. In a quiz contest of answering 'Yes' or 'No', what is the probability of guessing atleast 6 answers correctly out of 10 questions asked'? Also find the probability of the same if there are 4 options for a correct answer.
(07 Marks)
b. Define exponential distribution and obtain the mean and standard deviation of the exponential distribution.
(0) 7 Marks)
c. If X is a normal variate with mean 30 and standard deviation 5 , find the probabilities that (i) $26 \leq \mathrm{X} \leq 40$, (ii) $\mathrm{X} \geq 45$, (iii) $|\mathrm{X}-30|>5$. [Give that $\phi(0.8)=0.288 \mathrm{I}, \phi(2.0)=0.4772$, $\phi(3.0)=0.4987, \phi(1.0)=0.3413]$
(06 Marks)
a. Certain tubes manufactured by a company have mean life time of 800 hrs and standard deviation of 60 hrs . Find the probability that a random sample of 16 tubes taken from the group will have a mean life time (i) between 790 hrs and 810 hrs , (ii) less than 785 hrs , (iii) more than $820 \mathrm{hrs} .[\phi(0.67)=0.2486, \phi(1)=0.3413, \phi(1.33)=0.4082]$.
(06 Marks)
b. A set of five similar coins is tossed 320 times and the result is:

No. of heads:	0	I	2	3	4	5
Frequency:	6	27	72	112	7 I	32

Test the hypothesis that the data follow a binomial distribution. [Given that $\psi_{0,0 \text { as }}^{2}(5)=11.07$]
(07 Marks)
c. It is required to test whether the proportion of smokers among students is less than that among the lectures. Among 60 randomly picked students, 2 were smokers. Among 17 randomly picked lecturers, 5 were smokers. What would be your conclusion?
(07 Marks)
\square
Fourth Semester B.E. Degree Examination, June/July 2014 Microcontrollers

Time: 3 hrs.
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A
1 a. What is microcontroller? List out the difference between CISC and RISC.
(06 Marks)
b. Explain the 8051 block diagram and its features.
(10 Marks)
c. Briefly explain about stack and stack pointer operation.
(04 Marks)
2 a. Define addressing mode. Mention the various types of addressing modes with an example with respect to 8051 .
(06 Marks)
b. Explain the following instructions with an example:
(i) DIV AB
(ii) SWAP A
(iii) RRC A
(iv) XCHD A @ R_{p}
(08 Marks)
c. Write an ALP to perform 16 -bit $\times 8$-bit multiplication.
(06 Marks)
3 a. List out and explain different assembler directives used in an ALP.
(06 Marks)
b. Briefly explain about what are the steps involve to create a program in an ALP.
(08 Marks)
c. Calculate the time delay for the following subroutine program. Assume XTAL $=11.0592 \mathrm{MHz}$.

MOV TMOD, \#01
HERE: MOV TLO, \#0F2H
MOV THO, \#OFFH
CPL P1.5
ACALL DELAY
SJMP llERE
; ___ delay using timer 0
DELAY: SETB TRO
AGAIN: JNB TFO, AGAIN
CLR TRO CLR TFO RET
(06 Marks)
4 a. Explain about stepper motor interface with diagram and also write a ' C ' program if a motor takes 90 steps to make one complete revolution and show the calculation. (Both clockwise \& anticlockwise).
(12 Marks)
b. Explain DAC interface with diagram and also write a ' C ' program to generate stair case waveform.
(08 Marks)

PART - B

5 a. Define interrupt and mention the difference between interrupts and polling method.
(06 Marks)
b. Explain about timer/counter control logic diagram and also briefly explain various timers mode operation.
(08 Marks)
c. List out the various types of interrupts and also write the bit pattern of $1 E$ SFR with explanation with respect to 8051 .
(06 Marks)
6 a. Bricfly cxplain about DB-9 connector pins function. (06 Marks)
b. Write a "C' program to send the messages "Normal speed" and "High speed" to the serialport. Assuming that SW is connected to pin P2.0. monitor its status and set the baud rate asfollows:
$\mathrm{SW}=0.28,800$ baud rate
$\mathrm{SW}=1.56 \mathrm{~K}$ baud rate, Assume $\mathrm{XTAL}=11.0592 \mathrm{MHz}$.(08 Marks)c. Write the steps to receive and transfer data serially.(06 Marks)
7 a. List out the features of MSP430. (06 Marks)
b. Briefly explain about MSP430 architecture with diagram. (08 Marks)
c. Bricfly explain about memory space distribution with respect to MSP430. (06 Marks)
8 Write short notes on :
a. Internal RA.M structure of 8051
b. Special function registers
c. Bit addressable instructions
d. Built in timers.
(20 Marks)

Fourth Semester B.E. Degree Examination, June/July 2014 Control Systems

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

1 a. Explain with examples open loop and closed loop control systems. List merits and demerits of both.
(10 Marks)
b. Draw the electrical network based on torque-current analogy give all the performance equation for the Fig.Q.l(b).
(10 Marks)

Fig.Q.1(b)
2 a. Obtain the T.F of the system using block diagram reduction method.
(10 Marks)

b. Obtain the transfer function using signal flow graph. By Mason's gain formula. (10 Marks)

Fig.Q.2(b)
3 a. Draw the transient response characteristics of a control system to a unit step input and define the following: i) Delay time; ii) Rise timc; iii) Peak time; iv) Maximum overshoot; v) Scttling time.
(06 Marks)
b. Derive the expressions for peak time t_{p} for a second order system for step input. (04 Marks)
c. The response of a servo mechanism is $c(t)=1+0.2 \mathrm{e}^{-60 t}-1.2 \mathrm{e}^{-10 t}$ when subjected to a unit step input. Obtain an expression for closed loop transfer function. Determine the undamped natural frequency and damping ratio.
(04 Marks)
d. The open loop transfer function of a unity feedback system is given by $G(s)=\frac{K}{S}(S T+1)$. where K and T are positive constant. By what factor should the amplifier. gain ' K ' be reduced so that the peak, overshoot of unit step response of the system is reduced from 75% to 25%.
(06 Marks)
4 a. Explain Routh-l lurwitz criterion in stability of a control system.
(04 Marks)
b. The characteristics equation for certain feedback control systems are given below. Determine the system is stable or not and find the value of for a stable system $\mathrm{S}^{3}-3 \mathrm{ks}^{2}+(\mathrm{k}+2) \mathrm{s}+4=0$.
(06 Marks)
c. The open loop T.F. of a unity feedback system is given by
$\mathrm{G}(\mathrm{s})=\frac{\mathrm{k}(\mathrm{s}+3)}{\mathrm{s}\left(\mathrm{s}^{2}+2 \mathrm{~s}+3\right)(\mathrm{s}+5)(\mathrm{s}+6)}$
Find the value of ' K ' of which the closed loop system is stable.
(06 Marks)
d. What are the disadvantages of RH criterion on stability of control system?
(04 Marks)

PART - B

5 a. For a unity feedback system, the open-loop transfer function is given by $G(s)=\frac{K}{s(s+2)\left(s^{2}+6 s+25\right)}$.
i) Sketch the root locus for $0 \leq K \leq \infty$.
ii) At what value of ' K ' the system becomes unstable.
iii) At this point of instability, determine the frequency of oscillation of the system.
(15 Marks)
b. Consider the system with $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}}{\mathrm{s}(\mathrm{s}+2)(\mathrm{s}+4)}$ find whether $\mathrm{s}--0.75$ and $\mathrm{s}--1+j 4$ is on the root locus or not using angle condition.
(05 Marks)
6 a. Construct the Bode plots for a unity feedback control system having $G(s)=\frac{2000}{s(s+1)(s+100)}$
from the Bode plots determine:
i) Gain cross over frequency.
ii) Phase cross over frequency.
iii) Gain margin.
iv) Phase margin.

Comment on stability.
(14 Marks)
b. List the limitations of lead and lag compensations.
(06 Marks)
7 a. The transfer function of a control system is given by $\frac{y(s)}{u(s)}=\frac{s^{2}+3 s+4}{s^{3}+2 s^{2}+3 s+2}$ obtain a state model.
(10 Marks)
b. State the properties of state transition matrix and derive them.

8 a. Lixplain the procedure for investigating the stability using Nyquist criterion.
(08 Marks)
b. Using Nyquist stability criterion, investigate the closed loop stability of a negative feedback control system whose open loop transfer function is given by

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}_{(}\left(\mathrm{ST}_{4}+1\right)}{\mathrm{S}^{3}} \cdot \mathrm{~K} \cdot \mathrm{~T}_{s}>0 .
$$

(12 Marks)

Fourth Semester B.E. Degree Eramination, June/July 2014 Signals anne Systems

Time: 3 hrs .
Max. Marks: 100
Note: Answer any Five gill questions, selecting atleast TWO quevi ns from each part.

PART - A
1 a. Determine the even and ode part of the sigr if $x(t)$ shown in Fig.Q.1(a).
(06 Marks)

i) $\quad x_{1}(t)+x_{2}(t)$
ii) $x_{1}(t) \cdot x_{2}(t)$
iii) $x_{1}(t / 2)$
iv) $x_{2}(2 t)$
v) $x_{2}(t)-x_{1}(t)$
(08 Marks)

c. Check whether each of the folle nins sims is periodic or not. If periodic determine its fundamental period:
i) $\quad x(n)=\cos (2 n)$
ii) $\quad \mathrm{x}(\mathrm{n})=(-1)^{11}$
iii) $x(n)=\cos \left(\frac{\pi}{8} n^{2}\right)$
(06 Marks)

2 a. Perform the convolution of the fothewing sigals shown in Fig.Q.2(a) and also sketch the $0 / \mathrm{p}$ signal $y(t)$.
(08 Marks)

b. Compute the convolution sum of
c. Compute the convolution of two sequeave,,$n(n)=\left\{1,2,3\right.$, and $x_{2}(n)=\{1,2,3,4\}$.

3 a. Check the followings are stable..... amoryless:
i) $\mathrm{h}(\mathrm{t})=\mathrm{e}^{-1} \mathrm{u}(\mathrm{t}+\mathrm{I}(\mathrm{t})$
ii) $h(t)=e^{-4|l|}$
iii) $h(n)=2 u(n)-2 u(n-2$;
iv) $h(n)=\delta(n)+\sin (n \pi)$.
(08 Marks)
b. Find the total response f one som
$\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=2 x(t) \quad(i)=-1, \quad d t / t=0 \quad$ and input
$x(t)=\cos t u(t)$.
(07 Marks)
c. Find the difference equation corr arg the bock diagram shown in Fig.Q.3(c).
(05 Marks)

 $\mathrm{x}(\mathrm{n}) \cdot \mathrm{y}(\mathrm{n}) \xrightarrow{\mathrm{DPFS}} \mathrm{Y}(\mathrm{k}) \mathrm{S} \mathrm{Y}(\mathrm{k})$.
(07 Marks)
b. Obtain the DTFS cocfficions o: $\because=a, \frac{6 \pi}{13}+\frac{\pi}{6}$ Draw the magnitude and phase spectrum.
(06 Marks)
c. Determine the time domain s, z. Meresponding to the following spectra shown in Fig.Q.4(c).
(07 Marks)

5 a. Let $\mathrm{F}\left\{\mathrm{x}_{1}(\mathrm{t})\right\}=\mathrm{x}_{1}(\mathrm{j} \Omega)$ and $\mathrm{F}, \mathrm{x}:(\mathrm{y})$ then prove that

$$
F\left\{x_{1}(t) x_{2}(t)_{\}}=\frac{1}{2 \pi} \int_{0}^{2} x_{1}(j \hat{\lambda}) x_{2},\right.
$$

(07 Marks)
b. Find the Fourier transform of the sgnic. x : nown in Fig. Q.5(b).
(06 Marks) (3)

$2.5(b)$
c. Find the inverse Fourier transform of
$X(j w)=\frac{j w}{(2+j w)^{2}}$ using propertes.
(07 Marks)

6 a. Draw the frequeney response of the systew deseribed by the impulse response $h(t)=\delta(t)-2 e^{-2 t} u(t)$.
(07 Marks)
b. Find the Fourier transform of the !ematice mulse tram

(08 Marks)
c. A signal $x(t)=\cos (10 \pi t ; 3 \cos$ ant s daty sampled with sampling period Ts. Find the Nyquist rate.
(05 Marks)
7 a. Determine Z-transform of the followial ard also find the ROC:
i) $x(n)=0.8^{n} u(-\eta \ldots 1)$
ii) $x(n)=-u(-n-1)+\left(\frac{1}{2}\right)^{n} u(n)$
(08 Marks)
b. It $\mathrm{x}(\mathrm{n}) \longleftrightarrow \mathrm{X}(\mathrm{z})$, with $\mathrm{ROC}=$ the that $\mathrm{n} x(\mathrm{n}) \stackrel{\longleftrightarrow-\mathrm{X}}{\mathrm{X}(\mathrm{z})} \mathrm{dz}$ with $\mathrm{ROC}=\mathrm{R}$.
(06 Marks)
c. Determine the inverse Z-transform of at an
$X(z)=\frac{3 z^{2}+2 z+1}{z^{2}+3 z+2}$
(06 Marks)

8 a. Determine the impulse response of the sace described by $\mathrm{y}(\mathrm{n})-2 \mathrm{y}(\mathrm{n}-1 ;-\mathrm{y}(\mathrm{f}--2,=\mathrm{x}(\mathrm{I}) \quad \therefore \quad \mathrm{n}$
(08 Marks)
b. Solve the following difference equation us milateral Z-transform:
$y(n)-\frac{3}{2} y(n-1)+\frac{1}{2} y(n-2)=x(1)$ with initia conditions $y(-1)=4, y(-2)=10$ and $i / p \times(n)=\left(\frac{1}{4}\right)^{n} u(n)$.
(08 Marks)
c. Define stabiliy and catasality witi resen, transform.
\square

Fourth Semester B.E. Degree Examination, June/July 2014 Fundamentals of HDL

Time: 3 hrs.
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Mention the types of HDL descriptions. Explain how half adder can be modeled in VHDI and verilog in any one description method.
(10 Marks)
b. Discuss the shift operators used in VHDL and verilog with example.
(04 Marks)
c. Write switch level description of an inverter in verilog.
(03 Marks)
d. $\mathrm{A}=110, \mathrm{~B}=111, \mathrm{C}=011000, \mathrm{D}=111011$, evaluate A and not B or C nor 2 and D .
(03 Marks)
2 a. Write a data flow description in VHDL for two-bit magnitude comparator. Show simulation waveforms.
(08 Marks)
b. Write a verilog code to realize D-latch with active high enable in data flow modeling method. Show simulation waveforms.
(06 Marks)
c. Write HDL code for 2×2 combinational array multiplier (VHDL or verilog).
(06 Marks)
3 a. Write a VHDL code to realize JK flipflop with synchronous reset.
(04 Marks)
b. Write verilog description to realize:
i) 3-bit counter using case statement
ii) 4:1 multiplexcr using if statement
(06 Marks)
c. Explain Booth algorithm with an example and write the flow chart of Booth multiplication algorithm. Write VHDL or verilog code of 4×4 bit Booth algorithm.
(10 Marks)
4 a. Write the VHIDL description of a 2:4 decoder using structural modeling method. (05 Marks)
b. Write the excitation table of an SRAM memory cell and write its structural description in VIIDL or verilog.
(10 Marks)
c. Write the structural description of a 4-bit asynchronous down counter using generate statement in verilog.
(05 Marks)

PART - B

5 a. Write a VHDL/verilog code to convert unsigned binary to an integer using procedure/task.
(06 Marks)
b. Write a VHDL/verilog description to find the floating sum $y=\sum_{i=0}^{3}(-1)^{i}(x)^{\prime} ; 0<x<1$ using function.
(06 Marks)
c. Write a VHDL code to write integers to a file.
(08 Marks)
6 a. Discuss about mixed type description and its advantages. Illustrate with an example.
(06 Marks)
b. Write short notes on VHDL package and discuss the syntax of declaration of a package.
(07 Marks)
c. Write the V1IDL/verilog description of 16×8 SRAM.
(07 Marks)

7 a. Explain how a VHDL entity can be invoked from a verilog module with full adder as an example.
(10 Marks)
b. Write the mixed language description to invoke verilog module of JK flip-flop with clear from VIIDL module.
(10 Marks)

8 a. Discuss mapping of signal assignment statement and variable assignment statement to gatelevel with suitable examples.
(05 Marks)
b. Explain mapping of if-else statement with a suitable example.
(05 Marks)
c. Show the synthesis information extracted from the listing shown below:

Package codes is
type op is (add, mul, divide, none);
end;
work codes:
entity ALUS2 is
Port (a, b : in std_logic_vector (3 downto 0);
$c_{\text {in }}$: in std_logic;
o_{p} : in op;
z: out std_logic vector (7 downto 0): $\mathrm{c}_{\text {cuta }}$: out std_logic; crr: out Boolean);
end ALUS2:

10EC46

Fourth Semester B.E. Degree Examination, June/July 2014 Linear ICs and Applications

Time: 3 hrs.
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Define the following parameters and mention its practical values for op-Amp 741.
(i) CMRR
(ii) Slew-rate (iii) PSRR
(iv) Output offset voltage.
(08 Marks)
b. Explain direct-coupled two I/P-Inverting summing amplifier with neat diagram and necessary design steps.
(06 Marks)
c. A non-inverting amplifier is to amplify a 100 m . V signal to a level to 5 V . Using a 741 op-Amp, design a suitable circuit.
(06 Marks)
2 a. Sketch the circuit of a high Z_{in} - capacitor-coupled voltage follower and design its steps.
(06 Marks)
b. A capacitor coupled non-inverting amplifier using 741 op-Amp has $A_{v}=100 \& V_{0}=5 \mathrm{~V}$. The load resistance is $10 \mathrm{k} \Omega$ and the lower cut-off frequency is to be 100 Hz . Design a suitable circuit.
(08 Marks)
c. Explain inverting A.C. Amplifier with neat diagram and mention its design steps using only single-supply op-Amp.
(06 Marks)
3 a. Explain phase lead and phase lag compensation methods along with frequency response.
(08 Marks)
b. Consider a 741 op-Amp with slew rate of $0.6 \mathrm{~V} / \mu \mathrm{s}$ is used as a voltage follower. Calculate (i) The slew rate limited cut-off frequency if the sine wave o/p is 6 V . (ii) Calculate the maximum peak value of the sinusoidal o/p voltage, if the circuit operator with unity gain cut-off frequency of 800 kHz . (iii) Calculate the maximum peak value of the o / p voltage, if the upper cut-off frequency is 8 kHz .
(06 Marks)
c. List the precautions that should be used for op-Amp circuit stability.
(06 Marks)
4 a. Draw the circuit of an instrumentation amplificr and explain how the voltage gain can be varied?
(10 Marks)
b. Discuss the operation of precision full wave rectifier circuit using bipolar op-Amp.
(10 Marks)

PART - B

5 a. Explain the operation of op-Amp sample and hold circuit with signal, control and output waveforms.
(08 Marks)
b. Draw a neat sketch and explain the working of wein bridge oscillator circuit.
(06 Marks)
c. Explain frequency doubler technique using op-Amp.
(06 Marks)
6 a. Sketch the circuit of a second order low lass filter and explain its working.
(07 Marks)
b. An INV Schmitt trigger circuit is to have UTP $=0 \mathrm{~V}$ and LTP $=2.5 \mathrm{~V}$. Design a suitable circuit using a bipolar op-Amp with $\pm / 15 \mathrm{~V}$ supply.
(06 Marks)
c. Sketch the circuit of an op-Amp astable multivibrator and show the voltage waveforms at various points and explain its operation.
(07 Marks)

7 a. Explain the terms line, load regulation and ripple rejection for a dc voltage regulator.
b. Design a voltage regulator using IC723 to get a voltage o/p of 25 V .
(06 Marks)
c. Mention the salient features of a 723 regulator.
8 a. Explain Mono-stable multi-vibrator using 555 lc ? ($\mathbf{0 6}$ Marks)
b. With a neat sketch, explain the working of a R-2R ladder network. (08 Marks)
c. With block diagram. explain successive approximation ADC .

Fourth Semester B.E. Degree Examination, June / July 2014 Advanced Mathematics - II

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions.
1 a. Define direction cosine and direction ratio of a linc. Hence show that $1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$.
(06 Marks)
b. For any cube show that angle between any two diagonals is $\cos ^{-1}\left(\frac{1}{3}\right)$.
(07 Marks)
c. Define plane. Derive equation of plane in general form.
(07 Marks)

2 a. Find equation of plane passing through $\mathrm{A}(-1,1,1), \mathrm{B}(1,-1,1)$ and perpendicular to plane $x+2 y+2 z-5=0$
(06 Marks)
b. Show that the line $\frac{x-4}{2}=\frac{y-2}{3}=\frac{z-3}{10}$ is parallel to plane $2 x+2 y-z=6$. Find distance between them.
(07 Marks)
c. Show that lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ are coplanar. Find point of intersection.
(07 Marks)

3 a. Find sine and cosine of angle between the vectors $4 i+3 j+k, 2 i-j+2 k$.
(06 Marks)
b. Show that points $(4,5,-1),(0,-1,-1),(3,9,4),(-4,4,4)$ are coplanar using vector method.
(07 Marks)
c. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.
(07 Marks)

4 a. A particle moves along the curve $x=t^{3}+1, y=t^{2}, z=2 t+5$. Find components of its velocity and acceleration at $t=1$ in the dircetion $i+j+3 k$
(06 Marks)
b. Find directional derivative of $x^{2}+y^{2}+4 x y z$ at $(1,-2,2)$ in the direction $2 i-2 j+k$.
(07 Marks)
c. Show that $\operatorname{grad}\left(\frac{1}{r}\right)=-\frac{\vec{r}}{r^{2}}$.
(07 Marks)

5 a. For any scalar function ϕ show that $\operatorname{curl}(\operatorname{grad} \phi)=0$.
(06 Marks)
b. If $\overrightarrow{\mathrm{F}}=\operatorname{grad} \phi, \phi=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+\mathrm{xyz}$, find $\nabla \cdot(\overrightarrow{\mathrm{F}})$ and $\nabla \times(\overrightarrow{\mathrm{F}})$ at $(1,1,1)$.
(07 Marks)
c. Find a, b, c so that $F=(x+y+a z) i+(x+c y+2 z) j+(x+2 y-z) k$ is irrotational. Find scalar function.
(07 Marks)

6 a. Find Laplace Transform if t^{n} and hence find $\mathrm{L}\binom{1}{\mathrm{t}^{2}}$.
(06 Marks)
b. Find $L\left[e^{21} \cos 3 t+e^{-1} \sin 2 t+t \sin t\right]$.
(07 Marks)
c. Find $L\left[\frac{e^{\prime}(\cos 3 t-\cos t)}{t}\right]$.
(07 Marks)

7 a. Find $L[\sin t \sin 2 t \sin 3 t]$.
(06 Marks)
b. Find $L[f(t)]$ where $f(t)=\left\{\begin{array}{cc}1 & 0<t \leq 1 \\ t & 1<t \leq 2 \\ t^{2} & t>2\end{array}\right.$.
(07 Marks)
c. Find $\mathrm{L}^{-1}\left\{\log \sqrt{\frac{s+a}{s-b}}\right\}$.
(07 Marks)

8 a. Find $L^{-1}\left\{\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}\right\}$.
(10 Marks)
b. Solve by Laplace transformation, $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+7 \frac{\mathrm{dy}}{\mathrm{dt}}+10 \mathrm{y}=4 \mathrm{c}^{-31}$, given $\mathrm{y}(0)=0, \mathrm{y}^{\prime}(0)=-1$.
(10 Marks)

